If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2=-19m-10
We move all terms to the left:
6m^2-(-19m-10)=0
We get rid of parentheses
6m^2+19m+10=0
a = 6; b = 19; c = +10;
Δ = b2-4ac
Δ = 192-4·6·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*6}=\frac{-30}{12} =-2+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*6}=\frac{-8}{12} =-2/3 $
| 9x3-4=32 | | 10(.4+0.5g)=4g | | -2/5v-7=1/3v-6/5 | | 61-x=46 | | x^2+15=79 | | X+3x2=18 | | 3x7=16 | | 3x+(8x-9)=90 | | 3x2+5=29 | | 3x+30+x=10+2x+x+2 | | X+4x-1=4+15 | | 16−2t=3/2+9 | | 3x(x+15)=0 | | 2t-11t=54 | | 31/2(12-x)=43 | | 2(x+15)-x=46 | | 2(x+7)–34=4x–11x+4(x-1) | | -4n-5=-8n+4 | | (x+120)+26+(2x+34)=180 | | 5^x=5555 | | b-11=-7 | | 81+x^2=225 | | 4(x−3)+12=15−5(x+6) | | 2(3y-6)=-30 | | (x-16)^2=58 | | (x-8)^2=70 | | 25+7x=8(x+4) | | 4x+27=81 | | 1332=x(x+1) | | -x/2-1=-7 | | 7x-15=9x-23 | | 3(v+5)=-3(4v-1)+5v |